
Go + Cassandra:
Insertion and Retrieval Patterns

Srdjan Marinovic
@a_little_srdjan

About me / Disclaimer
• Former CS researcher in Security and Distributed Systems.

• Currently building IoT cloud services at wirelessregistry.com

• #IoT #BigData #Privacy

• I am neither a C* nor a Go jedi :)

• The following ideas have nevertheless yielded working solutions.

• And I keep on learning daily about both techs.

http://wirelessregistry.com

Goal for this talk

• Share my account of using Go for concurrent insertion
and retrieval operations against Cassandra.

• Can be a starting point in linking Go APIs with Cassandra
backend.

• Helps me solidify my own knowledge, and  
produce some internal documentation :)

Contents
• Background

• Cassandra DB, Go concurrency

• The Simple Worker Pool pattern (basic building block)

• INSERTs

• SELECTs

• Note 1. This is a relatively short and a light-weight talk.  
I will highlight pointers to the rabbit holes.

• Note 2. This is not a talk about configuring gocql (set-up clusters, sessions).  
See the Cassandra and Go presentation by Al Tobey.

C* overview
• A column-family store (ala BigTable and HBase).

• Has a very nimble query language CQL.

• Tunable replication and read/write consistency properties.

• I.e. you can tune the C+A (following the CAP theorem).

• Peer-to-peer distribution model.

• All nodes are equal, no single point of failure.

C* data model
• Hello World example = “Collect a stream of events from sensors”. 
 
CREATE TABLE log ( 
 sensor_colour text, 
 event_id text, 
 timepoint timestamp,  
 properties text, 
  
 
 PRIMARY KEY ((sensor_colour), event_id, timepoint) 
)  
WITH CLUSTERING ORDER BY (timepoint DESC);

row_key=sensor_green

col_name=ID1:12132:properties col_name=ID2:12131:properties

col_value=on col_value=off

…

clustering columns

row/partition key

C* distribution model
F

T

Client D

A

C

B

Replication factor = 2

A

any node can handle
any request

Row Key Ranges

A

B

C

D

F

T

K

nodes are aware of
token ranges

C* data model
• CREATE TABLE log ( 

 sensor_colour text, 
 time_bucket text, //prevent columns form infinite growth! 
  
 event_id text, 
 timepoint timestamp,  
 
 properties text, 
 conf int // adding a field results in a new column 
 PRIMARY KEY ((sensor_colour, time_bucket), event_id, timepoint) 
)  
WITH CLUSTERING ORDER BY (timepoint DESC);

row_key=sensor_green:11Aug15

col_name=ID1:12131:properties col_name=ID1:12131:conf

col_value=on col_value=6

…

CQL
• INSERT (row_key, field_names…) VALUES (?,?,…)

• SELECT <field_names> FROM <table> WHERE 
row_key OP value AND field_name OP value …

• SELECT * FROM log WHERE sensor_colour = “green”  
AND time_bucket = “11Aug2015”  
AND timepoint > 2015-11-83T04:05+0000

• No group_by and join operations.

• Row_key must be specified.  
-> Denormalize the data  
-> Build explicit indexes and trees  
-> Build _root_ tables (e.g. a table with one key and a list of all sensors)

Rabbit holes
• Multiple data centers

• Deletion

• Tombstones

• Replication when nodes fail

• Sets, Maps, Lists

• …

Basic Go concurrency
• (Go) routines are light-weight processes/tasks.  
 
go func(){ 
 // do work 
}()

• Channels are basic synchronization primitives. A sender
and a receiver block until their traces are in _sync_. 

go func(done chan struct{}){
// workA
done <- struct{}{}

}(doneCh)

go func(done chan struct{}){
<- done
// workB

}(doneCh)

workA will always be executed before workB!

doneCh := make(chan struct{})

Basic Go concurrency
• Channels can be buffered. They become FIFO queues.  

Receivers block if a channel is empty. 
Senders block if a channel is full.

go func(done chan struct{}){
// workA
done <- struct{}{}

}(doneCh)

go func(done chan struct{}){
<- done
// workB

}(doneCh)

Now, no guarantees that workA will be
executed before workB!

doneCh := make(chan struct{}, 1)

Playtime is over

Simple Worker Pool pattern

Client
(e.g.http)

WorkerJobJob

Client
(e.g.http)

Worker

Worker

Worker

Job

Job
Job

Job

Job

• The core building block/pattern for reads/writes to C*.
• Jobs are C* queries.  

• Concurrent routines are Go’s mechanism for “non-blocking” IO.  

• One C* node handles multiple reqs, and there are many nodes (set replication).

• Note. Though runtime can handle >10^5 routines. Experiment with the # of workers
to avoid overwhelming the nodes and thus downgrading the performance.  

buffered channel

Simple Worker Pool
type Worker struct {
 jobCh <-chan *Job
 dieCh <-chan struct{}
}

func (w Worker) work() {
 for {
 select {
 case <-w.dieCh:
 return

 case job, ok := <-w.jobCh:
 if !ok {
 return
 }

 job.execute()
 }
 }
}

Select primitive is a non-deterministic
choice between read/writes from/into channels

Reading from a closed
channel sets ok to false.

Loops until the
worker is told to die.

Simple Worker Pool
func RunWorkerPool(nWorkers int, jCh <-chan *Job) chan<- struct{} {
 diePoolCh := make(chan struct{}, 1)
 dieWorkerChs := make([]chan struct{}, nWorkers)

 for i := 0; i < nWorkers; i++ {
 dieCh := make(chan struct{}, 1)
 dieWorkerChs[i] = dieCh

 w := newWorker(jCh, dieCh)
 go w.work()
 }

 go func() {
 <-diePoolCh
 for i := 0; i < nWorkers; i++ {

 dieWorkerChs[i] <- struct{}{}
 }
 }()

 return diePoolCh
}

Launch workers and pass _die_
and job channels.

Launch the monitor that kills
the workers if the die_pool sig
is received.

Create a buffered _die_ channel
for each worker.

Give the caller a way
to kill the pool.

Rabbit holes
• Automated scaling of workers

• Monitor the rate of jobs and launch new workers.

• Note, mem_size/2k is a practical limit. Thrashing ensues afterwards :)

• Extending the buffer size to handle spikes

• Complements launching new workers, if you don’t want uncontrolled
growth of routines.

• Possibly add a dispatcher to ease channel contention.

• In this way workers register for work and can have their queues as well.

Basic insertions with gocql
type SingleEventInsertJob struct {
SensorColour string 
TimeBucket string 
EventId string 
Timepoint time.Time

}

func (j *SingleEventInsertJob) execute() {
q := “INSERT INTO log(sensor_colour, time_bucket, event_id, timepoint)” +
 "VALUES (?, ?, ?, ?)”;

query := session.Query(q)
err := query.Bind(j.SensorColour, j.TimeBucket, j.EventId, j.Timepoint).Exec()
if err != nil {
 // see later slides
}

}

CQL insert query

Log table mapping

type EventListInsertJob struct {
SensorColour string 
TimeBucket string 
EventIds []string
Timepoint time.Time

}

func (j *EventListInsertJob) execute() {
q := “INSERT INTO log(sensor_colour, time_bucket, event_id, timepoint)” +
 "VALUES (?, ?, ?, ?);

b := session.NewBatch(0)
for _, e := range j.EventIds {
 b.Query(q, j.SensorColour, j.TimeBucket, j.EventId, j.Timepoint)
}

err := session.ExecuteBatch(b)
if err != nil {
// see next slide

}
}

CAUTION! Only batch when
adding columns to the same
row_key. Otherwise spawn one
job per row_key.

To batch or not

Multiple columns!

Live fail-safe and prosper
err := session.ExecuteBatch(b)
if err != nil {
// Option 1: re-insert the job back into the buffer

// Option 2: pause the workers with a (non-)linear back-off
 e.g. launch a new routine with a sleep timer.

// Option 3: dump the _write_ jobs to a local,S3,… storage
 schedule another clean-up process to deal with them.

}

• Nodes will fail. There are no 100% availability guarantees in data-centres,
especially as clusters grow.

• Network delays will happen (especially in the cloud infrastructure).

• Fail-safety policy is a must. It is not “anomalous” behaviour, it should be
considered standard.

Basic reads with gocql
type SimpleSensorReadJob struct {
SensorColour string 
TimeBucket string
ResultCh chan interface{}

}

func (j *SimpleSensorReadJob) execute() {
q := "SELECT event_id FROM log WHERE sensor_colour = ? and time_bucket
= ?"

var eventId string

iter := session.Query(q, j.SensorColour, j.TimeBucket).Iter()
for {
 if iter.Scan(&eventId) {
 j.ResultCh <- eventId
 } else {
 // signal that there are no more result
 }
}
iter.Close() // returns err

}

CQL select query

Row key mapping

Decouple scanning from reading!

Don’t forget to close the ResultCh after all
jobs are done.

Processing results
SimpleSensor

ReadJob
Agg

Worker

eventId

ResultCh
eventIdeventId

type AggWorker struct {
 ResultCh <-chan interface{}
}

func (w AggWorker) work() {
 for {
 select {
 case result, ok := <-w.ResultCh:
 if !ok {
 return
 }

 // do something with the result
 }
 }
}

Processing results
SimpleSensor

ReadJob
Result
WorkereventId

ResultCh

eventId

eventId

type CountEventsJob struct {
 EventId int;

 GlobalCounter *int;
 GlobalLock *sync.Mutex;

}

func (j *CountEventsJob) execute() {
 // update counter

}

Result
WorkereventId

• Reuse the pattern

• Link Worker Pools: 
Group_by, join, aggregator operation are
implemented as a sequence of jobs.

Handling complex keys
type SensorReadJob struct {
SensorColour string
ResultCh chan string
JobCh chan *Job

}

func (j *SensorReadJob) execute() {
// Step 1) Compute/fetch the time buckets to create simple jobs.

// Step 2) Push all simple jobs into a worker pool (via JobCh).

// Step 3) Process results from ResultCh (as per previous slides).
}

• It helps me to think of all reads from Cassandra as Map/Reduce jobs over  
streams of columns coming from iterators.

• Note. DataStax is promoting Spark as the framework for reading from C*.

Rabbit holes
• gocql has a number of ways to experiment with the performance

• Number of connections per node.

• Number of streams per connection.

• Number of pages to prefetch.

• Retry policies.

• The code is clean and easy to read and is the place to learn more!

• Other C* frameworks built on gocql ease with the complex data mapping.

• gocassa, gocqltable, …

Thank you.
Srdjan Marinovic
@a_little_srdjan

The slides are available at:

https://github.com/a-little-srdjan/cassandra_and_go_presentation

https://github.com/a-little-srdjan/cassandra_and_go_presentation

